
VOLUME 85, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 25 DECEMBER 2000
Chaotic Dynamics of Coupled Transverse-Longitudinal Plasma Oscillations
in Magnetized Plasmas
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The propagation of intense electromagnetic waves in cold magnetized plasma is tackled through a
relativistic hydrodynamic approach. The analysis of coupled transverse-longitudinal plasma oscillations
is performed for traveling plane waves. When these waves propagate perpendicularly to a static magnetic
field, the model is describable in terms of a nonlinear dynamical system with 2 degrees of freedom. A
constant of motion is obtained and the powerful classical mechanics methods can be used. A new class
of solutions, i.e., the chaotic solutions, is discovered by the Poincaré surface of sections. As a result,
coupled transverse-longitudinal plasma oscillations become aperiodically modulated.

PACS numbers: 52.40.Db, 05.45.–a, 52.35.–g
An intense electromagnetic field can drive an unmagne-
tized electron plasma into relativistic regime and generate
longitudinal plasma waves due to the self-consistent strong
Lorentz force v 3 B. Thus, the transverse-longitudinal
oscillations of electron plasma are coupled. In the past,
this problem has been intensively studied in the case of
a homogeneous, cold, collisionless, unmagnetized plasma
(see, e.g., Decoster [1] and references therein). Originally,
the analysis in the relativistic regime was performed by
Akhiezer and Polovin [2]; later on the results were applied
to laser-plasma interaction by Kaw and Dawson [3]. The
problem was revisited using a Hamiltonian description by
Kaw et al. [4]. These studies (without external magnetic
field Bs) have revealed that the problem of coupled nonlin-
ear waves can be reduced to a Hamiltonian system having
traveling wave solutions which depend only on a single
variable h � �vt 2 k x�, where the angular frequency
and the wave vector are v and k, respectively. A large
variety of nonlinear wave solutions exist, but no chaotic
solutions appear even in the strongly nonlinear regime.

In the classical regime, the propagation of an electro-
magnetic wave through a magnetized plasma involves a
rich variety of propagation modes due to the coupling term
v 3 Bs [5,6]. Although, this problem has been formulated
using a Hamiltonian description [1], it has never been ana-
lyzed in such detail as the nonmagnetized relativistic fluid
model of Ref. [2]. This present paper describes for the first
time the effects of a static magnetic field on the coupled
transverse-longitudinal plasma oscillations in the relativis-
tic regime. In particular, the existence of a new class of
solutions, i.e., the chaotic solutions, is revealed with the
Poincaré surface of sections.

The motion of a single electron can turn chaotic in the
presence of both an electromagnetic field and an external
static magnetic field [7,8]. Recently, these findings were
verified also for collective electron motion in magnetized
plasmas [9–11]. It is, however, important to note that in
these studies the waves were always considered as driven
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waves, and their propagations in the plasma were taken
into account through the dispersion relation. The Maxwell
equations were not solved simultaneously with the fluid
equations. Therefore, the possible nonlinear effects on the
wave propagation were not properly taken into account.

The system of coupled transverse-longitudinal waves
is described self-consistently by solving the Maxwell
equations together with the relativistic fluid equations, in
the presence of a static magnetic field Bs. We assume
a cold, collisionless, homogeneous plasma. The basic
equations read8>><
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where r � 2e�ne 2 ne0� and J � 2enep��gme� are the
charge and current densities, respectively. The ions form
an immobile neutralizing background �Zni � ne0�; ne

is the electron density, e and me are, respectively, the
electron charge and mass. The vector and scalar potentials
are denoted by A and f, respectively. The relativis-
tic momentum p � gmev includes the Lorentz factor
g � 1�

p
1 2 kvk2�c2.

We consider an electromagnetic wave of arbitrary am-
plitude propagating in the x̂ direction and polarized per-
pendicularly to the external static magnetic field Bs � Bsẑ
applied to the plasma. The wave propagates in extraordi-
nary mode: the wave are partially transverse and partially
longitudinal. In the Coulomb gauge �= ? A � 0�, the
term = 3 A represents the wave magnetic field. The
electric field components of such a wave are given by
Ey � 2≠Ay�≠t and Ex � 2≠f�≠x in transverse and
longitudinal directions, respectively. The motion of the
© 2000 The American Physical Society 5571
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electron plasma is confined to the xy plane. The motion
along ẑ is decoupled and is thus neglected here. We search
traveling wave solutions which depend only on the inde-
pendent variable h � �vt 2 k x�. The phase velocity
5572
yw � v�k is assumed always greater than the speed of
light c. Thus, the wave-particle interactions and wave
breaking are avoided and the hydrodynamic description is
justified even in the strong field limit.

We introduce the following normalized variables:
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where nc � �v2me´0��e2 is the critical density associated
to the angular frequency v of the wave. The plasma
frequency and the cyclotron frequency are denoted by
vp � �ne0 e2�me´0�1�2 and vc � eBs�mec, respectively.
Eliminating the scalar and vector potentials from Eqs. (1)
and (2), and performing the further transformation
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q
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we find8>>><
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where D �
q

b2
w 2 1 1 Y2 1 X2. Equations (4) rep-

resent a conservative system with 2 degrees of freedom
where h plays the role of “time.” Equations (4) can also be
obtained from Eqs. (12) and (13) from Akhiezer et al. [2].
The coupled transverse-longitudinal oscillations of plasma
are strictly equivalent to a classical motion of a fictitious
particle of unit mass in a two-dimensional potential.

The first integral I�PX , PY , X, Y � or isolating integral of
the dynamical system (4) has been discovered. It means
the total energy E0— the sum of the wave energy and the
kinetic particle energy —conserves with time and reads
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where V �X, Y , bw� � bwD 1 X. The effective space
variables are �X, Y � and �PX � �X, PY � �Y �, the longi-
tudinal and transverse momenta, respectively. Using the
field variables, E and B, it is possible to show from
Eq. (5) that dI�dt � 0 gives the Poynting theorem [12]:
the self-consistent solution of the electromagnetic fields
and particle dynamics without a dissipative term makes
the problem conservative. The invariant I is very simi-
lar to a Hamiltonian for classical motion of a particle in
an electromagnetic field. But it is written in noncanoni-
cal variables and does not satisfy the Hamilton equations
� �p � 2≠H�≠q, �q � ≠H�≠p�. However, the existence of
the first integral, I , allows us to study the solutions of
the dynamical system (4) by using the Poincaré surface
of sections.
The invariant I involves three parameters: the total en-
ergy E0, the phase velocity bw , and V � vc�vp , the ratio
of the cyclotron to the plasma frequencies. At the equilib-
rium point �X, Y � � �21, 0�, where the forces and the mo-
menta cancel � �PX � �PY � PX � PY � 0�, the minimum
energy is given by Emin � �b2

w 2 1� which corresponds
to the nonoscillating solution. Scanning on the parameters
of I , it is possible to analyze in detail the different solu-
tions of Eqs. (4). The total energy E0, i.e., the constant of
motion I , and the phase velocity bw are fixed, and there-
after we construct for different values of the parameter V

the Poincaré surface of sections by plotting PX vs X each
time Y � 0 and PY $ 0.

FIG. 1. Poincaré surface of section in (PX , X) phase space
�PY $ 0, Y � 0� for E0 � 0.57 and bw � 1.1 when (a) V � 0
or (b) V � 0.15. No chaotic solutions.
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In the absence of the external static magnetic field Bs,
�V � 0�, Eq. (5) reduces to the Hamiltonian given in [2].
Figure 1(a) displays a typical Poincaré surface of section
without the external static magnetic field for E0 � 0.57
and bw � 1.1. The central fixed point �PX � 0, X � 22�
corresponds to periodic wave solutions. The higher order
fixed points (the five elliptic points) and the islands around
them arise from the resonances induced by the cou-
pling. These solutions represent nonlinearly modulated
electromagnetic and plasma waves: the wave envelope
is modulated periodically (elliptic points) or quasi-
periodically (islands).

We discuss next the different solutions of Eqs. (4) for fi-
nite magnetic field strengths �V . 0�. Figure 1(b) shows
the Poincaré surface of section for E0 � 0.57, bw � 1.1,
and V � 0.15 in the weakly relativistic regime. Similar
solutions to those presented in Fig. 1(a) are found and,
in addition, new resonances appear. The magnetic field
in Eqs. (4) enhances the coupling and creates a new per-
turbation in the “particle orbits.” Thus, new elliptic points
and an “island chain” are produced. These solutions corre-
spond to nonlinearly modulated extraordinary waves. The
nonlinearity introduced by the magnetic field generates
new harmonics.

FIG. 2. Poincaré surface of section in (PX , X) phase space
�PY $ 0, Y � 0� for bw � 1.1 when (a) E0 � 0.57 and V �
1.5 or (b) E0 � 1.0 and V � 1.5. Chaotic solutions.
In Fig. 2(a) we present the Poincaré surface of section
for E0 � 0.57, bw � 1.1, and V � 1.5. A thin layer of
stochasticity appears near the separatrix, i.e., around the
hyperbolic points. A new class of solutions is revealed.
As a result, the coupled transverse-longitudinal motion
of the electron plasma is chaotic. The amplitude of
transverse and longitudinal electric fields associated to the
extraordinary waves becomes unpredictable and is very
sensitive to the initial conditions. From the physical
point of view, this chaotic behavior in coupled transverse-
longitudinal plasma oscillations implies strong harmon-
ics generation. For bf � 10 which is a rather high
value and E0 � 0.57, V � 1.5, chaos disappears and
the Poincaré surface of section is similar to the one
of a two-dimensional harmonic oscillator. Figure 2(b)
shows the Poincaré surface of section for the relativistic
regime E0 � 1. Under a strong perturbation, high order
resonances are generated and the chaos spreads to a part
of the Poincaré surface of section. For the high values
of E0 and V, global stochasticity is observed, and only
some regular trajectories around the central fixed point are
still preserved.

The numerical integration of Eqs. (4) allows us to com-
pute the evolution of the electric fields vs the time h from8>>><
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FIG. 3. Longitudinal and transverse electric fields Ẽx and Ẽy ,
respectively, as a function of time h. The computation is for
the initial condition represented by the point Sr in the Poincaré
surface of section, Fig. 1(b), when bw � 1.1, E0 � 0.57, and
V � 0.15. Regular solutions.
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FIG. 4. Longitudinal and transverse electric fields Ẽx and Ẽy ,
respectively, as a function of time h. The computation is for
the initial condition represented by the point Sc in the Poincaré
surface of section, Fig. 2(a), when bw � 1.1, E0 � 0.57, and
V � 1.5. Chaotic solutions.

where the normalized transverse and longitudinal field
components are
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Figure 3 displays the longitudinal and transverse elec-

tric fields for a fifth order elliptic point which represents a
regular solution when E0 � 0.57, bw � 1.1, and V �
0.15. The initial conditions represented by the point Sr

in the Poincaré surface of section for the computation are
shown in Fig. 1(b). The structure of the longitudinal elec-
tric field Ẽx is the same as the one associated to the nonlin-
ear plasma wave. The amplitude of the transverse electric
field Ẽy is anharmonic and modulated.

In Fig. 4, we plot the longitudinal and transverse elec-
tric fields corresponding to the chaotic solutions. For
E0 � 0.57, bw � 1.1, and V � 1.5, the initial condition
Sc chosen in the Poincaré surface of section is shown in
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Fig. 2(a). The transverse and longitudinal fields are ape-
riodically modulated. Their amplitudes become unpre-
dictable and are very sensitive to the initial conditions.

In conclusion, we have studied in a magnetized plasma
the propagation of an intense electromagnetic wave in
an extraordinary mode. In the case of traveling plane
wave solutions, the problem of the coupled transverse-
longitudinal plasma oscillations can be reduced to a con-
servative system. A constant of motion has been found
which allows one to use the Poincaré surface of section
for the analysis of the different solutions. Depending on
the value of the parameters �E0, bw , V�, a large variety
of strongly nonlinear waves appear. In particular, a new
class of solutions, i.e., the chaotic solutions, has been dis-
covered. In this case, the amplitude of longitudinal and
transverse electric fields associated to the waves becomes
unpredictable.
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